Clean Power

Ukrainian (UA)English (United Kingdom)

The National Academy of Sciences of Ukraine


The Institute of Electrodynamics

About Institute

DOI: https://doi.org/10.15407/publishing2019.53.048

PERIODIC AND CHAOTIC OPERATING MODES OF THE LINEAR PERMANENT MAGNET MOTOR WITH THE VIBRO-IMPACT LOAD

R.P. Bondar1*, A.D. Podoltsev2**
1- Kyiv National University of Construction and Architecture,
pr. Povitroflotsky, 31, Kyiv, 03037, Ukraine,
е-mail: This e-mail address is being protected from spambots. You need JavaScript enabled to view it
2- Institute of Electrodynamics of the National Academy of Sciences of Ukraine,
Peremohy, 56, Kyiv-57, 03680, Ukraine,
* ORCID ID : http://orcid.org/0000-0002-0198-5548
** ORCID ID : http://orcid.org/0000-0002-9029-9397

The paper presents the two-mass vibration system with tubular linear permanent magnet vibratory motor. The model of the system is grounded on an equivalent circuit with the lumped parameters and takes account the dependence of electric parameters from an operating frequency. The model also considers magnetic losses in the motor core. We applied the Hertz’s formula for modeling of an impact force. Furthermore, we calculated characteristics of the two-mass electromechanical system in dependence of the impact parameters and operating frequency. Based on the derived system dynamical equations, and the corresponding Poincare map, the analysis of periodic and chaotic operating modes of the two-mass vibro-impact system is made. The received bifurcations diagram of motor current, at change of driving frequency, shows the existence of two vibro-impact modes for the given parameters of equivalent circuit. Constructional parameters of the motor have essential influence on dynamic behavior of the system. Changes of motor's anchor mass, and also a value of a preliminary gap between the hammer and damper can cause instability of the operating mode and non-periodic processes with complicated dynamics. We did the analysis of influence of the field excitation intensity on the motor’s operation mode. On the basis of nonlinear equations of system dynamics, and also by means of the Poincare map and bifurcation diagram, we have shown the influence of the permanent magnets field intensity on the machine operation stability. References 17, figures 9, table 1.
Key words: chaotic operating mode, linear permanent magnet motor, two-mass vibro-impact system, vibro-impact load.



1. Aidanpää J. O., & Gupta R. B. Periodic and Chaotic Behaviour of a Threshold-Limited Two-Degree-of-Freedom System. Journal of Sound and Vibration. 1993. No 165 (2). Pp. 305 – 327. DOI: http://dx.doi.org/10.1006/jsvi.1993.1259.
2. Guanwei Luo & Zhang Yanlong & Jianhua Xie & Jiangang Zhang. Vibro-impact dynamics near a strong resonance point. Acta Mechanica Sinica/Lixue Xuebao. 2007. No 23. Pp. 329 – 341. DOI: http://dx.doi.org/10.1007/s10409-007-0072-7.
3. Nguyen D. T., Noah S. T., & Kettleborough C. F. Impact behaviour of an oscillator with limiting stops, part I: A parametric study. Journal of Sound and Vibration. 1986. No 109 (2). Pp. 293 – 307.
DOI: http://dx.doi.org/10.1016/s0022-460x(86)80010-4.
4. Bazhenov V.A., Pogorelova OS, Postnikova T.G., Lukyanchenko O.A. Numerical studies of dynamic processes in vibro-impact systems in the simulation of impact by force of contact interaction. Strength problems 2008. No 6. Pp. 82 – 90. (Rus)  DOI: https://doi.org/10.1007/s11223-008-9080-5
5. Goldsmith W. Impact. Theory and physical properties of the colliding bodies. Per. from English Moscow: stroiizdat, 1965. 448 p. (Rus)
6. Parker T. S., Chua L. O. Practical Numerical Algorithms for Chaotic Systems. Berlin etc., Springer-Verlag, 1989. 348 p. DOI: https://doi.org/10.1007/978-1-4612-3486-9
7. Bondar R. P. Dynamics of a two-mass vibration system driven by a magnetoelectric linear motor. Bulletin of the Kremenchug Mykhaylo Ostrogradsky National University. 2014. No 4 (87). Pp. 9 – 14. (Ukr)
8. Haiyan Hu. Controlling chaos of a dynamical system with discontinuous vector field. Physica D-nonlinear Phenomena - PHYSICA D. 1997. No 106 (1-2). Pp. 1 – 8. DOI: http://dx.doi.org/10.1016/S0167-2789(97)00023-7.
9. Haiyan Hu. Controlling chaos of a periodically forced nonsmooth mechanical system. Acta Mechanica Sinica. 1995. No 11 (3). Pp. 251 – 258. DOI: http://dx.doi.org/10.1007/BF02487728.
10. Ditto W.L., Rauseo S.N., & Spano M.L. Experimental control of chaos. Physical Reviev Letters. 1990. No 65 (26). Pp. 3211 – 3214. DOI: http://dx.doi.org/10.1103/PhysRevLett.65.3211.
11. Dongping J., & Haiyan H. Periodic vibro-impacts and their stability of a dual component system. Acta Mechanica Sinica. 1997. No 13 (4). Pp. 366 – 376. DOI: http://dx.doi.org/10.1007/bf02487196.
12. Kleczka M., Kreuzer E., & Schiehlen W. Local and Global Stability of a Piecewise Linear Oscillator. Philosophical Transactions: Physical Sciences and Engineering. No 338 (165), Nonlinear Dynamics of Engineering Systems. 1992. Pp. 533 – 546. DOI: http://dx.doi.org/10.1098/rsta.1992.0019.
13. Chen J. H., Chau K. T., & Chan C. C. Analysis of chaos in current-mode-controlled DC drive systems. IEEE Transactions on Industrial Electronics. 2000. No 47 (1). Pp. 67 – 76. DOI: http://dx.doi.org/10.1109/41.824127.
14. Bazanella A. S., & Reginatto R. Robustness margins for indirect field-oriented control of induction motors. IEEE Transactions on Automatic Control. 2000. No 45 (6). Pp. 1226 – 1231. DOI: http://dx.doi.org/10.1109/9.863613.
15. Chen J. H., Chau K. T., Chan C. C., & Jiang Quan. Subharmonics and chaos in switched reluctance motor drives. IEEE Transactions on Energy Conversion. 2002. No 17 (1). Pp. 73 – 78. DOI: http://dx.doi.org/10.1109/60.986440.
16. Gao Y., & Chau K. T. Design of permanent magnets to avoid chaos in PM synchronous machines. IEEE Transactions on Magnetics. 2003. No 39(5). Pp. 2995 – 2997. DOI: http://dx.doi.org/10.1109/TMAG.2003.816718.
17. Gao Y., & Chau K. T. Design of permanent magnets to avoid chaos in doubly salient PM machines. IEEE Transactions on Magnetics. 2004. No 40 (4). Pp. 3048 – 3050. DOI: http://dx.doi.org/10.1109/TMAG.2004.830196.

Received 05.06.2019  

PDF