Clean Power

Ukrainian (UA)English (United Kingdom)

The National Academy of Sciences of Ukraine


The Institute of Electrodynamics

About Institute

DOI: https://doi.org/10.15407/publishing2020.55.085

SHIELDING EFFICIENCY FOR UNDERGROUND EXTRA-HIGH VOLTAGE CABLE LINE USING FERROMAGNETIC SHIELD WITH VARIOUS CONFIGURATIONS

I.M. Kucheriava
Institute of Electrodynamics of the National Academy of Sciences of Ukraine,
Peremohy, 56, Kyiv-57, 03680, Ukraine,
e-mail: This e-mail address is being protected from spambots. You need JavaScript enabled to view it

The computer modeling of the magnetic field distribution for underground extra-high voltage cable line (330 kV) with ferromagnetic shield of various shapes is performed. As shown, the use of H-shaped shield without any gaps gives a possibility to provide the safe level of magnetic field on the ground above the cables. The dependence of magnetic field level on the thickness of H-shaped ferromagnetic shield is analyzed. References 11, figures 3
Key words: underground cables, extra-high voltage power cable line, ferromagnetic shield, electromagnetic safety, computer modeling.



1. Shidlovskii A.K., Shcherba A.A., Zolotarev V.M., Podoltsev A.D., Kucheriava I.M. Extra-high voltage cables with polymer insulation. Kyiv: Institute of Electrodynamics, Ukrainian Academy of Sciences, 2013. 550 p.
2. Electric installation code. Minpalivo Ukrainy, 2010. 776 p. (Ukr)
3. Shcherba A.A., Podoltsev O.D., Kucheriava I.M. The magnetic field of underground 330 kV cable line and ways for its reduction. Tekhnichna Elektrodynamika. 2019. No 5. Pp. 3-9. (Rus) DOI: https://doi.org/10.15407/techned2019.05.003
4. Kucheriava I.M. Shielding of underground extra-high voltage cable line by plane ferromagnetic shield. Tekhnichna Elektrodynamika. 2019. No 6. Pp. 13-17. (Rus) DOI: https://doi.org/10.15407/techned2019.06.013
5. Doronin M.V., Greshniakov G.V., Korovkin N.V. Magnetic shields of special design. Nauchno-tekhnicheskie vedomosti Sankt-Peterburgskogo politekhnicheskogo universiteta. 2017. Vol. 23. No 1. Pp. 124-133. DOI: https://doi.org/10.18721/JEST.230112 (Rus)
6. López J.C., and Romero C.R. Influence of different types of magnetic shields on the thermal behavior and ampacity of underground power cables. IEEE Transactions on Power Delivery, October 2011. Vol. 26. No 4. Pp. 2659-2667. DOI: https://doi.org/10.1109/TPWRD.2011.2158593
7. https://aktau.arcelormittal.com/news-and-media/news/2013/nov/21112013.aspx?sc_lang=ru-RUwww.rada.com.ua/ (accessed: 15.02.2020)
8. De Wulf M., Wouters P., Sergeant P., Dupré L., Hoferlin E., Jacobs S., Harlet P. Electromagnetic shielding of high-voltage cables. Journal of Magnetism and Magnetic Materials. 2007. No 316. Pp. 908-911. DOI: https://doi.org/10.1016/j.jmmm.2007.03.137
9. Comsol multiphysics modeling and simulation software – http://www.comsol.com/ (accessed: 15.02.2020)
10. Lyach V.V., Molchanov V.M., Sudakov I.V., Pavlichenko V.P. 330 kV cable line is a new step in development of Ukrainian power networks. Elektricheskie seti i sistemy. 2009. No 3. Pp. 16-21.
11. Podoltsev A.D., Kucheriava I.M. Multiscale modeling in electrical engineering. Kyiv: Institute of Electrodynamics, Ukrainian Academy of Sciences, 2011. 255 p. (Rus)

Received 03.03.2020  

PDF