Clean Power

Ukrainian (UA)English (United Kingdom)

The National Academy of Sciences of Ukraine

The Institute of Electrodynamics

About Institute



I.V. Bozhko*, O.M. Karlov**, I.P. Kondratenko***, R.S. Kryshchuk****, K.O. Lypkivskyi*****, A.G. Mozharovskyi******, A.P. Raschepkin*******
Institute of Electrodynamics of the National Academy of Sciences of Ukraine,
Peremohy, 56, Kyiv-57, 03680, Ukraine,
e-mail: This e-mail address is being protected from spambots. You need JavaScript enabled to view it
*** ORCID ID :
**** ORCID ID :
***** ORCID ID :
****** ORCID ID :
******* ORCID ID :

The article deals with the results of research in 2018, the department of electromagnetic systems. It is reported that analytical methods for calculating electromagnetic fields in electromagnetic systems are developed. The methods simulate current contours in space to create alternating magnetic fields and induce currents in electrically conductive regions. It is shown that magnetic forces and heat distribution in the inductor for heating moving ferromagnetic strip are investigated. Inductor for heating ferromagnetic strip is without ferromagnetic core, and it takes into account the finite width of the strip. Much attention is given to the ability to heat ferromagnetic strip with a satisfactory uniformity in width. The conditions for electrodynamic stabilization of strip at the center of the air gap have been determined by frequency control. Also this article deals with the analytical method for calculating electromagnetic fields of arc-stator axial induction disk motors with bimetallic rotors. This method takes into account the real spatial current distribution three-phase winding of two arc-stators on both sides at disk rotor. The method allows calculating three-dimensional electromagnetic field distribution in air-gap between two stators, and it takes into account the linear speed of moving disk rotor. It is spoken in detail about the analytical expressions for the calculation magnetic forces in the air gap. It should be noted that energy characteristics and magnetic forces of the gearless axial arc-stator disk motor for powerful ball mills are calculated by the developed analytical method. The paper gives valuable information about experimental studies of the barrier discharge to the water surface. Experiments shows the existence of a uniform barrier discharge to the water surface at atmospheric pressure, at the fixed length of the voltage pulse region and at fixed values of the electric field in a gas space. The complex of works, which substantiates in detail the possibility and expedient ways of increasing the efficiency of using the installed source power, are done. The power source consists of the transforming element with sectional winding in the transformer-key actuating structure of the AC voltage stabilizer. Reference 34, figures 24, tables 3.
Key words: induction heating, axial arc-stator induction motor, uniform barrier discharge, transformer-key actuating structure.

1. Raschepkin A.P., Kondratenko I.P. Methodological foundations of the analysis of electromagnetic processes in linear induction machines. Kiev: Instytut elektrodynamiky NAN Ukrainy, 2017. 355 p. (Rus)
2. Vishtak P.A., Kondratenko I.P., Krutilin V.A., Raschepkin A.P. Method for calculating linear inductors with concentric windings for heating metal tapes. Tekhnichna Elektrodynamika. 1987. No 2. Pp. 6–12. (Rus)
3. Karlov O.M., Kondratenko I.P., Krischuk R.S., Raschepkin A.P. The linear non-iron inductor with rotating magnetic field. Pratsi Instytutu elektrodynamiky Natsionalnoi Akademii Nauk Ukrainy. 2018. No 49. Pp. 39–50. (Rus)
4. Tamm I.E. Fundamentals of the theory of electricity. Moskva: Nauka. 1989. 504 p. (Rus)
5. Karlov O.M., Kondratenko I.P., Kryshchuk R.S., Rashchepkin A.P. Energy parameters of axial arc-stator motors with bimetallic disk rotors. Pratsi Instytutu elektrodynamiky Natsionalnoi Akademii Nauk Ukrainy. 2017. No 48. Pp. 76–82. (Ukr)  DOI:
6. Karlov O.M., Kondratenko I.P., Kryshchuk R.S., Rashchepkin A.P. Axial magnetic forces of the axial arc-stator induction motor with disc bimetallic rotor. Pratsi Instytutu elektrodynamiky Natsionalnoi Akademii Nauk Ukrainy. 2018. No 50. Pp. 71–78. (Ukr)
7. Kogelschatz Ulrich. Dielectric-barrier Discharges: Their History, Discharge Physics and Industrial Applications. Plasma Chemistry and Plasma Processing. 2003. Vol. 23. No 1. Pp. 1–46. DOI:
8. Kogelschatz Ulrich. Filamentary, Patterned, and Diffuse Barrier Discharges. IEEE Transactions on Plasma Science. 2002. Vol. 30. No 4. Pp. 1400–1408.  DOI:
9. Shao Tao, Long Kaihua, Zhang Cheng, Yan Ping, Zhang Shichang, Pan Ruzheng. Experimental study on repetitive unipolar nanosecond-pulse dielectric barrier discharge in air at atmospheric pressure. Journal of Physics D: Applied Physics. 2008. Vol. 41. Pp. 215203 (8 pp).  DOI:
10. Shuai Zhang, Li Jia, Wen-chun Wang , De-zheng Yang, Kai Tang, Zhi-jie Liu. The influencing factors of nanosecond pulse homogeneous dielectric barrier discharge in air. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2014. Vol. 117. Pp. 535–540.  DOI:
11. Somekawa T., Shirafuji T., Sakai O., Tachibana K., Matsunaga K. Effects of self-erasing discharges on the uniformity of the dielectric barrier discharge. Journal of Physics D: Applied Physics. 2005. Vol. 38. Pp. 1910–1917.  DOI:
12. Bozhko I.V., Karlov O.M., Kondratenko I.P., Charnyi D.V. Development of complex for water treatment with pulse barrier discharge. Tekhnichna Elektrodynamika. 2017. No 6. Pp. 80-86. (Ukr)  DOI:
13. Chong Liu, Danil Dobrynin, Alexander Fridman. Uniform and non-uniform modes of nanosecond-pulsed dielectric barrier discharge in atmospheric air: fast imaging and spectroscopic measurements of electric fields. Journal of Physics D: Applied Physics. 2014. Vol. 47. Pp. 252003 (7 pp).  DOI:
14. Walsh J. L., Konga M. G. 10 ns pulsed atmospheric air plasma for uniform treatment of polymeric surfaces. Applied Physics Letters. 2007. Vol. 91. Pp. 251504 (3 pp).  DOI:
15. Baroch P., Saito N., Takai O. Special type of plasma dielectric barrier discharge reactor for direct ozonization of water and degradation of organic pollution. Journal of Physics D: Applied Physics. 2008. Vol. 41. Pp. 085207 (6 pp).  DOI:
16. Golubovskii Yu. B., Maiorov V. A., Behnke J. F., Tepper J., Lindmayer M. Study of the homogeneous glow-like discharge in nitrogen at atmospheric pressure. Journal of Physics D: Applied Physics. 2004. Vol. 37. Pp. 1346–1356.  DOI:
17. Bo Jiang, Jingtang Zheng, Shi Qiu, Qinhui Zhang, Zifeng Yan, Qingzhong Xue. Review on electrical discharge plasma technology for wastewater. Chemical Engineering Journal. 2014. No 236. Pp. 348–363.  DOI:
18. Magureanu Monica, Piroi Daniela, Mandache Nicolae Bogdan, Parvulescu Vasile. Decomposition of methylene blue in water using a dielectric barrier discharge: Optimization of the operating parameters. Journal of Applied Physics. 2008. No 104. Pp. 103306 (7 pp).  DOI:
19. Shen Zhao, Chunjing Hao, Di Xu, Yiyong Wen, Jian Qiu, Kefu Liu. Effect of Electrical Parameters on Energy Yield of Organic Pollutant Degradation in a Dielectric Barrier Discharge Reactor. IEEE Transactions on Plasma Science. 2017. Vol. 45. No 6. Pp. 1043–1050.  DOI:
20. Kondratenko I.P., Raschepkin A.P. Induction heating of flat metal. Novyny energetyky. 1998. No 11. Pp. 40–42. (Rus)
21. Bozhko I.V., Serdyuk Y.V. Determination of Energy of a Pulsed Dielectric Barrier Discharge and Method for Increasing Its Efficiency. IEEE Transactions on Plasma Science. 2017. Vol. 45. No 12. Pp. 3064–3069.  DOI:
22. Bimal, K Bose. Power Electronics. Why the Field is so Exciting. IEEE Power Electronics Society Newsletter Fourth Quarter. 2007. V. 19. No 4. P. 11–20.
23. Lipkovskiy K.A. Transformer-key executive structures of AC voltage converters. Kiev: Naukova dumka, 1983. 216 p. (Rus)
24. Lypkivskyi K.O., Mozharovskyi A.H. Features of the integration of sections of the turns of the transforming element of the transformer-and-switches executive structure of the ac voltage converter. Pratsi Instytutu elektrodynamiky Natsionalnoi Akademii Nauk Ukrainy. 2018. No 51. Pp. 60–64. (Ukr)  DOI:
25. Lypkivskyi K.O., Mozharovskyi A.H. Device for controlling the amount of AC voltage. Patent of Ukraine for utility model No 126885, MPK G05F 1/00, H02M 7/00, 2018. (Ukr)
26. Huang M., Dong L., Zhang J., Wang J., Hao Z. Research on the Differential Protection Algorithm of Multi-Tap Special Transformer. Journal of Power and Energy Engineering. 2014. Vol. 2. No 09. Pp. 98–105. DOI:
27. Electronic Tap Switching Voltage Regulator. URL: (accessed 05.03.2019)
28. Willems W., Vandoorn T.L., De Kooning, J. D., Vandevelde L. Development of a smart transformer to control the power exchange of a microgrid. 4th International Conf. Innovative Smart Grid Technologies Conference Europe. 6-9 Oct. 2013, At Lyngby, Denmark. Pp. 1–5. DOI:
29. Voltage Adjuster VA-1200. URL: (accessed 16.03.2019).
30. Szczesniak, Pawel. The compensator of voltage sage/swell installed in connection terminals of small industrial plant or selected loads. In: 2017 19th European Conference on Power Electronics and Applications. Europe, 2017. Pp. 1–6. DOI:
31. Lypkivskyi K.O., Mozharovskyi A.H. Current state and development trends of ac voltage converters with transformer-and-switches executive structure. Tekhnichna Elektrodynamika. 2018. No 5. Pp. 44–51. (Ukr)  DOI:
32. Lypkivskyi K.O., Mozharovskyi A.H. Determination of the power of transforming elements in the reconfiguration of the transformer-and-switches executive structures of ac voltage stabilizers. Analysis of influence factors. Tekhnichna Elektrodynamika. 2018. No 3. Pp. 48–55. (Ukr)  DOI:
33. COMSOL Multiphysics. URL:
34. Lypkivskyi K.O., Mozharovskyi A.H. Determination of the influence of changes in the limits of the input voltage range on the power of a transformer element of a voltage stabilizer with a transformer-and-switches executive structure. Tekhnichna Elektrodynamika. 2019. No 3. Pp. 46–54. (Ukr)  DOI:

Received 06.05.2019