Clean Power

Ukrainian (UA)English (United Kingdom)

The National Academy of Sciences of Ukraine


The Institute of Electrodynamics

About Institute

DOI: https://doi.org/10.15407/publishing2019.54.052

DYNAMIC BEHAVIOR OF THE LINEAR PERMANENT MAGNET MOTOR AS A ELEMENT OF TWO-MASS VIBRO-IMPACT SYSTEM

R.P. Bondar1*, A.D. Podoltsev2**
1- Kyiv National University of Construction and Architecture,
pr. Povitroflotsky, 31, Kyiv, 03037,
Ukraine, e-mail: This e-mail address is being protected from spambots. You need JavaScript enabled to view it
2- Institute of Electrodynamics of the National Academy of Sciences of Ukraine,
Peremohy, 56, Kyiv-57, 03680, Ukraine
* ORCID ID : http://orcid.org/0000-0002-0198-5548
** ORCID ID : http://orcid.org/0000-0002-9029-9397

The paper presents two-mass vibro-impact system with the tubular linear permanent magnet vibratory motor. The model of the system is grounded on an equivalent circuit with lumped parameters and takes account the dependence of electric parameters from an operating frequency. The model also considers magnetic losses in the motor core. We applied the Hertz’s formula for modeling of an impact force. On the basis of nonlinear equations of system dynamics, and also by means of the Poincare map and bifurcation diagram, we have shown the influence of the supply voltage on the system’s operation mode. Based on the derived system dynamical equations, the analysis of periodic, quasi-periodic and chaotic operating modes of the two-mass vibro-impact system is made. Reference 13, figures 10.
Key words: chaotic operating mode, linear permanent magnet motor, two-mass vibro-impact system.



1. Guanwei L., Zhang Y., Jianhua X., Jiangang Z. Vibro-impact dynamics near a strong resonance point. Acta Mechanica Sinica.Lixue Xuebao. 2007. Vol. 23. Pp. 329-341. DOI: http://dx.doi.org/10.1007/s10409-007-0072-7.
2. Bazhenov V.A., Pogorelova OS, Postnikova T.G., Lukyanchenko O.A. Numerical studies of dynamic processes in vibro-impact systems in the simulation of impact by force of contact interaction. Strength problems. 2008. No 6. Pp. 82-90. DOI: https://doi.org/10.1007/s11223-008-9080-5
3. Bondar R.P. Investigation of characteristics of a magnetoelectric linear vibration motor when working on an elastic-viscous load. Electrical engineering and electromechanics. 2019. No. 1. Pp. 9-16. DOI: https://doi.org/10.20998/2074-272X.2019.1.02.
4. Parker T. S., Chua L. O. Practical Numerical Algorithms for Chaotic Systems. Berlin etc., Springer-Verlag. 1989. 348 p. DOI: https://doi.org/10.1007/978-1-4612-3486-9
5. Long Y.J. Chaotic dynamics and compaction engineering. Proceedings of the Third International Conference on Soft Soil Engineering. 2001. Pp. 143-147. DOI: https://doi.org/10.1201/9780203739501-15
6. Chau K.T, Wang Z. Chaos in Electric Drive Systems: Analysis, Control and Application. John Wiley & Sons (Asia) Pte Ltd, 2011. 318 p. DOI: http://dx.doi.org/10.1002/9780470826355.
7. Dong L., Johansen S.T., Engh T.A. Flow induced by an impeller in an unbaffled tank – I. Experimental. Chemical Engineering Science. 1994. Vol. 49 (4). Pp. 549-560. DOI: https://doi.org/10.1016/0009-2509(94)80055-3.
8. Jana S.C., Sau M. Effects of viscosity ratio and composition on development of morphology in chaotic mixing of polymers. Polymer. 2004. Vol. 45(5). Pp. 1665-1678. DOI: https://doi.org/10.1016/j.polymer.2003.12.047.
9. Chau K.T.,Ye S., GaoY., Chen J.H. Application of chaotic-motion motors to industrial mixing processes. Proceedings of IEEE Industry Applications Society Annual Meeting. 2004. Vol. 3. Pp. 1874-1880.
10. Wyon D.P. The role of the environment in buildings today: thermal aspects (factors affecting the choice of a suitable room temperature). Build International. 1973. Vol. 6. Pp. 39-54.
11. Ito S., Narikiyo T. Abrasive machining under wet condition and constant pressure using chaotic rotation (in Japanese). Journal of the Japan Society for Precision Engineering. 1998. Vol. 64. Pp. 748-752. DOI: https://doi.org/10.2493/jjspe.64.748
12. Rosenstein M. T., Collins J. J., De Luca C. J. A practical method for calculating largest Lyapunov exponents from small data sets. Physica D: Nonlinear Phenomena. 1993. Vol. 65 (1-2). Pp. 117-134. DOI: https://doi.org/10.1016/0167-2789(93)90009-P.
13. Wolf A., Swift J. B., SwinneyH. L., Vastano J. A. Determining Lyapunov exponents from a time series. Physica D: Nonlinear Phenomena. 1985. Vol. 16 (3). Pp. 285-317. DOI: https://doi.org/10.1016/0167-2789(85)90011-9.

Received 19.07.2019  

PDF